RECOGNISING ACHIEVEMENT

ADVANCED GCE

Morning
Time: 1 hour 30 minutes

Additional materials: Answer Booklet (8 pages)
Graph paper
MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.

Section A (36 marks)

1 Differentiate $\sqrt[3]{1+6 x^{2}}$.

2 The functions $\mathrm{f}(x)$ and $\mathrm{g}(x)$ are defined for all real numbers x by

$$
\mathrm{f}(x)=x^{2}, \quad \mathrm{~g}(x)=x-2
$$

(i) Find the composite functions $\mathrm{fg}(x)$ and $\mathrm{gf}(x)$.
(ii) Sketch the curves $y=\mathrm{f}(x), y=\mathrm{fg}(x)$ and $y=\operatorname{gf}(x)$, indicating clearly which is which.

3 The profit $£ P$ made by a company in its nth year is modelled by the exponential function

$$
P=A \mathrm{e}^{b n}
$$

In the first year (when $n=1$), the profit was $£ 10000$. In the second year, the profit was $£ 16000$.
(i) Show that $\mathrm{e}^{b}=1.6$, and find b and A.
(ii) What does this model predict the profit to be in the 20th year?

4 When the gas in a balloon is kept at a constant temperature, the pressure P in atmospheres and the volume $V \mathrm{~m}^{3}$ are related by the equation

$$
P=\frac{k}{V}
$$

where k is a constant. [This is known as Boyle's Law.]
When the volume is $100 \mathrm{~m}^{3}$, the pressure is 5 atmospheres, and the volume is increasing at a rate of $10 \mathrm{~m}^{3}$ per second.
(i) Show that $k=500$.
(ii) Find $\frac{\mathrm{d} P}{\mathrm{~d} V}$ in terms of V.
(iii) Find the rate at which the pressure is decreasing when $V=100$.
(i) Verify the following statement:

$$
\begin{equation*}
\text { ' } 2^{p}-1 \text { is a prime number for all prime numbers } p \text { less than } 11 \text { '. } \tag{2}
\end{equation*}
$$

(ii) Calculate 23×89, and hence disprove this statement:

$$
{ }^{\prime} 2^{p}-1 \text { is a prime number for all prime numbers } p \text { '. }
$$

$6 \quad$ Fig. 6 shows the curve $\mathrm{e}^{2 y}=x^{2}+y$.

Fig. 6
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x}{2 \mathrm{e}^{2 y}-1}$.
(ii) Hence find to 3 significant figures the coordinates of the point P , shown in Fig. 6, where the curve has infinite gradient.

Section B (36 marks)

7 A curve is defined by the equation $y=2 x \ln (1+x)$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and hence verify that the origin is a stationary point of the curve.
(ii) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$, and use this to verify that the origin is a minimum point.
(iii) Using the substitution $u=1+x$, show that $\int \frac{x^{2}}{1+x} \mathrm{~d} x=\int\left(u-2+\frac{1}{u}\right) \mathrm{d} u$.

Hence evaluate $\int_{0}^{1} \frac{x^{2}}{1+x} \mathrm{~d} x$, giving your answer in an exact form.
(iv) Using integration by parts and your answer to part (iii), evaluate $\int_{0}^{1} 2 x \ln (1+x) \mathrm{d} x$.
$8 \quad$ Fig. 8 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=1+\sin 2 x$ for $-\frac{1}{4} \pi \leqslant x \leqslant \frac{1}{4} \pi$.

Fig. 8
(i) State a sequence of two transformations that would map part of the curve $y=\sin x$ onto the curve $y=\mathrm{f}(x)$.
(ii) Find the area of the region enclosed by the curve $y=\mathrm{f}(x)$, the x-axis and the line $x=\frac{1}{4} \pi$.
(iii) Find the gradient of the curve $y=\mathrm{f}(x)$ at the point $(0,1)$. Hence write down the gradient of the curve $y=\mathrm{f}^{-1}(x)$ at the point $(1,0)$.
(iv) State the domain of $\mathrm{f}^{-1}(x)$. Add a sketch of $y=\mathrm{f}^{-1}(x)$ to a copy of Fig. 8.
(v) Find an expression for $\mathrm{f}^{-1}(x)$.

